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ABSTRACT: Nanorod diffusion in polymer melts is faster than predicted by the continuum
model (CM). Rutherford backscattering spectrometry is used to measure the concentration profile
of titanium dioxide (TiO2) nanorods (L = 43 nm, d = 5 nm) in a polystyrene (PS) matrix having
molecular weights (M) from 9 to 2000 kDa. In the entangled regime, the tracer diffusion
coefficients (D) of TiO2 decrease as the M−1.4, whereas the CM predicts DCM ∼ M−3.0 using the
measured zero-shear viscosity of TiO2(1 vol %): PS(M) blends. By plotting D/DCM versus M/Me,
where Me is the entanglement molecular weight, diffusion is enhanced by a factor of 10−103 as M/
Me increases. The faster diffusion is attributed to decoupling of nanorod diffusion from polymer
relaxations in the surrounding matrix, which is facilitated by the nanorod dimensions (i.e., L greater
than and d less than the entanglement mesh size, 8 nm).

Nanoparticle (NP) diffusion plays a key role in the design
and function of polymer nanocomposites, because NP

mobility impacts whether NPs disperse or aggregate due to
favorable or unfavorable mixing, respectively, in homopolymer
matrices.1−3 In multiphase nanocomposites containing NPs and
block copolymer, the partitioning of NPs within a specific
domain requires rapid mobility of NPs relative to the slower
polymer rearrangement during assembly.4 Thus, an under-
standing of NP diffusion is important for designing and
fabricating new hybrid materials for microelectronics, light
management, and energy applications,5−7 which rely on precise
control over the lateral and vertical positioning of NPs in
polymer films.
Traditionally, diffusion of large spherical NPs in a continuous

medium has been described by the Stoke−Einstein (SE)
relation DSE = (1/fπ) (kBT/ηR), where kB is the Boltzmann
constant, T is absolute temperature, η is the pure solvent
viscosity, and R is the NP radius. The constant f is 4 or 6,
depending on whether there is slip or nonslip conditions at the
particle/medium interface, respectively. However, for NPs
smaller than the characteristic length scales of the medium,
namely, the polymer radius of gyration (Rg) for unentangled
polymer melt, correlation length (ξ) for a polymer solution,
and tube diameter (dt) for an entangled polymer melt, the SE
relationship underestimates NP diffusion.8−12 Note that the
tube diameter is comparable to the entanglement mesh size in
an entangled polymer melt. As pointed out by Brochard Wyart
and de Gennes,13 for such conditions, the continuum fluid
assumption fails, because flow around small particles is no
longer captured by the viscosity η. Rather, depending on NP

size relative to the characteristic lengths (Rg and dt for melts),
the local friction experienced by the NP is reduced if the
particle diameter is less than the Navier extrapolation length
(order of microns). A recent study investigated the effect of NP
size on diffusion in polymer melts and found that D/DSE

increased as 2R/dt decreased.
11

In the limit of small (2R/dt ≪ 1) and large (2R/dt ≫ 1) NP
sizes, NP motion in a polymer melt is well understood by
theory or molecular dynamics (MD) simulations.13,14 Based on
the size of NPs relative to the polymer chains, the motion of
large NPs in a highly entangled polymer melt is strongly
constrained by chain entanglements that relax via reptation (i.e.,
D ∼ η−1 ∼ M−3.4), whereas chain disentanglement is not
required for very small NPs because the entanglement mesh
contains free space for monomeric units to rearrange and
accommodate NP motion.13 Recent MD simulations by Kalathi
et al. provide a more detailed understanding of NP dynamics as
a function of matrix molecular weight and NP size.14 Although
a majority of studies involve spherical NPs, the diffusion of
anisotropic NPs is important for understanding the processing
of nanocomposite devices15 and transport in crowded biological
materials.16

Nanorod (NR) motion is described by hydrodynamic theory
that relates the translational diffusion coefficient, DCM, to the
friction coefficient ξ by the Einstein relation D = kBT/ξ. In

Received: May 25, 2015
Accepted: August 17, 2015
Published: August 20, 2015

Letter

pubs.acs.org/macroletters

© 2015 American Chemical Society 952 DOI: 10.1021/acsmacrolett.5b00348
ACS Macro Lett. 2015, 4, 952−956

pubs.acs.org/macroletters
http://dx.doi.org/10.1021/acsmacrolett.5b00348


terms of parallel and perpendicular diffusion along the NR axis
in a continuous medium (Figure 1a), DCM is

= + ⊥D D D( 2 )/3CM (1)

Here, parallel and perpendicular diffusion coefficients are
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where d and L are NR diameter and length, respectively.17 Eq 1
is in good agreement with experimental results for cylindrical
particles moving in a continuum fluid, when ligand dimensions
and boundary conditions are considered.18−20 However, similar
to spherical NPs, NRs are expected to show faster diffusion in a
highly entangled polymer melt when the NR size becomes
smaller than dt (d < dt). Recent study showed a deviation from
continuum hydrodynamics for gold NRs diffusion in poly-
ethylene glycol using a multiphoton fluctuation correlation
spectroscopy technique.21 For ultrathin NRs (i.e., d < dt),
Brochard-Wyart and de Gennes predicted that D|| is determined
by the local segmental friction, namely, ηm(L/a), where ηm and
a are the monomer viscosity and size, respectively.13 However,
D⊥ is described by the friction due to the bulk viscosity (ηB) of
the entangled polymer melt. Figure 1b shows NR diffusion
perpendicular and parallel to the network formed by entangled
matrix chains. Although theoretical predictions of anisotropic
NP transport in a polymer melt have been proposed,13

experimental studies that identify and understand important
materials parameters are lacking.
In this letter, we measure the diffusion coefficients of

nanorods (L = 43.1 nm, d = 4.6 nm) as a function of matrix
molecular weight, which ranges from unentangled (M = 9 kDa)
to highly entangled (2000 kDa), to test the validity of
hydrodynamic theory and investigate the underlying polymer
dynamics for conditions, where the nanorod diameter is less
than the network size (d < dt). To minimize the interaction
between the diffusing nanorod and matrix, the nanorod surface
is grafted with phenyl groups that are chemically similar to the
polystyrene matrix chains. Our results show that the nanorod
diffusion is as much as 1000× faster than that predicted by the

continuum Stokes−Einstein prediction using the measured
bulk viscosity of the matrix. This enhancement in nanorod
diffusion is attributed to a reduced local friction that results
from the decoupling of nanorod motion (i.e., parallel direction)
and polymer dynamics described by the relaxation of matrix
chains by reptation.
TiO2 NRs (L = 43.1 nm and d = 4.6 nm) were synthesized

using standard Schlenk-line techniques, in the presence of oleic
acid and oleylamine and using TiCl4 as precursor. Ligands were
subsequently displaced by treatment with NOBF4 to allow
further functionalization. Details can be found elsewhere.22

Further, NR surface modification using (chloromethyl)-
dimethyl phenylsilane facilitates the dispersion of NRs in PS
(M = 9, 65, 160, 650, and 2000 kDa), as shown in Figure 2. A

mixture of methyl ethyl ketone and dimethylformamide was
used as a solvent. Bilayers were prepared with a thin (∼300
nm) PS (M = 9−2000 kDa) film containing TiO2 NRs (ϕNR =
0.01) over a thick (∼10 μm) PS matrix with the same M and
annealed in a vacuum oven at T = 190 °C from minutes to days
(see Supporting Information for NR dispersion after thermal
annealing). The dilution of the NRs in the tracer film was
required to ensure unhindered NR diffusion into the matrix.
Tracer diffusion coefficients were determined by fitting the
TiO2 volume fraction profiles determined by Rutherford
Backscattering Spectrometry (RBS). Using appropriate boun-
dary and initial conditions, ϕTiO2

(x) is given by
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Figure 1. (a) Schematic of a nanorod (NR) of diameter d and length L
in a matrix having an entanglement mesh size (dt) much smaller than d
and L. This continuous medium model results in the Einstein relation
where diffusion scales inversely with the matrix viscosity. (b) When the
entanglement mesh size is greater than d but less than L, NR diffusion
is faster due to reduced local friction for parallel NR diffusion.

Figure 2. Transmission electron micrograph depicting the dispersion
of phenyl-capped TiO2 NRs in a PS matrix (M = 650 kDa, ϕNR =
0.01). Histogram shows the diameter (d) and length (L) distributions,
where dt denotes the tube diameter of PS (∼8 nm).
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where erf, t, and l are the error function, annealing time, and
initial tracer thickness, respectively. This equation is convoluted
with the instrumental depth resolution, a Gaussian function,
and chi squared fitting is used to determine the best fit of eq 4
to the experimental profile.
For rheology measurements, the linear viscoelastic behavior

of the nanocomposites was measured on a Rheometrics Solids
Analyzer II using a sandwich fixture. Samples were annealed at
200 °C for 20 min before testing. The modulus was measured
using a frequency sweep under a N2 atmosphere at 170, 190,
210, and 230 °C with 0.5% strain. These were combined using
time−temperature superposition to yield a master curve, and
then, zero shear viscosity was obtained according to the
literature at 190 °C.23

The local polymer dynamics of PS and PS/NR was measured
by rheology. Akcora et al.24 reported solid-like mechanical
reinforcement in polymer nanocomposites due to nonuniform
dispersion (i.e., interconnected NPs) of spherical NPs at
loadings greater than 5 wt %. For the PS(M)/NR blends in this
paper, in the low frequency region, the storage and loss moduli
did not exhibit plateaus, consistent with a uniform NR
dispersion at each M. Moreover, the lack of a plateau indicates
that the NRs did not induce solid-like behavior by percolation
or clustering, which is only expected above ϕc ∼ 0.04, the 3D
percolation threshold for NRs with an aspect ratio of 9.25 For
ϕNR ∼ 0.01, Figure 3 shows that the zero-shear viscosities of

blends are a factor of ∼5 greater than pure PS at each M.
Although d < dt, the increase in viscosity in Figure 3 is expected
because NR length is significantly greater than dt (c.f., Figure
2). Similarly, the viscosity of polymer blends with thin (<dt)
clay particles increases with clay concentration, consistent with
predictions by Einstein.26

NR diffusion was measured as a function of matrix molecular
weight. For an annealed bilayer, Figure 4a shows a

representative NR volume fraction profile in a highly entangled
PS matrix (M = 2000 kDa), where the solid line eq 4 represents
a best fit to the experimental data (circles) using D = 3.5 ×
10−15 cm2 s−1. For comparison with the measured diffusion
coefficients, theoretical values based on the Einstein relation
eqs 1−3 were calculated using the viscosity shown in Figure 3
for pure PS (open squares) and PS/NR (ϕTiO2 = 0.01) blends
(open circles). The PS/NR (1 vol %) viscosity was chosen to
represent the bulk viscosity that NRs may experience in the
concentration gradient shown in Figure 4a. Note that the
scaling behavior in Figure 4b is independent of whether the PS
or PS/NR bulk viscosity is used.
Figure 4b shows the experimental and continuum predictions

for NR diffusion coefficients in polystyrene matrices ranging
from unentangled to entangled and provides insights into the
correlations between NR and the polymer dynamics. Because
DCM ∼ η−1 in the continuum model, the M dependence of the
measured bulk viscosity (i.e., η ∼ M3.0) is responsible for the
DCM ∼ M−3.0 scaling in Figure 4b (lower dashed line). This
behavior reflects the strong coupling between NR diffusion and

Figure 3. Zero-shear viscosity of pure PS and PS/NR blends (ϕNR = ∼
0.01) at T = 190 °C as a function of molecular weight (M = 9−2000
kDa). For M = 9k (unentangled), η was obtained by extrapolation
assuming Rouse dynamics, η ∼ M1. The dashed lines show the
viscosity scaling for PS and PS/NR above the entanglement molecular
weight are similar, namely, M3.0 and M3.2, respectively. The inset shows
the molecular weight dependence of the relaxation time (τ ∼ Mν)
determined from the crossover frequency of the storage and loss
moduli.

Figure 4. (a) Depth profile of TiO2 in a PS matrix (M = 2000 kDa)
after annealing at 190 °C for 24 h. (b) Theoretical (open circles and
squares) and measured (closed circles) diffusion coefficients of NRs in
PS matrices (M = 9−2000 kDa) at 190 °C. The critical molecular
weight for PS entanglement, Mc, is 38 kDa.

27 The error bars represent
the standard deviation from multiple samples, which is smaller than
the symbol size for M = 9, 160, and 2000 kDa. The error due to ligand
size is also smaller than the symbol size.
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chain relaxation inherent in the continuum model. Thus, NR
diffusion slows down dramatically as M increases for M > Mc.
However, the measured D values (closed circles) are greater
than those predicted by the continuum model. Furthermore,
the difference between D (measured) and DCM (predicted)
increases from about 1 to 3 orders of magnitude as M increases
from 65 to 2000 kDa, because D only weakly scales with M, D
∼ M−1.4 (upper dashed line). This weak M dependence for D,
relative to DCM ∼ M−3.0, implies that the dynamics of NR
diffusion is partially decoupled from the entangled matrix
polymers that relax by reptation. For comparison, complete
decoupling would lead to diffusion that is independent of
molecular weight.
This enhanced diffusion of NRs is in good agreement with

the diffusion of small NPs predicted by Brochard-Wyart and de
Gennes.13 For spherical NPs to diffuse through an entangle-
ment mesh, the relaxation of an entire chain is required when
particle size is much larger than dt. When the NP size becomes
smaller than the entanglement mesh size, the local relaxation of
chain segments is sufficient to accommodate the diffusive
motion of NPs. In the limit of small NPs (i.e., monomer size),
NP diffusion becomes independent of matrix molecular weight
as NPs freely move within the entangled network. On the other
hand, nanorod diffusion is highly anisotropic when D|| is greater
than D⊥. For NRs to move perpendicularly (Figure 1b), the
entire chain must relax, as required for large spherical NPs;
however, NRs moving parallel to their length only experience a
local nanoviscosity because d < dt. Thus, Brochard-Wyart and
de Gennes predict that the net NR diffusion is faster than that
predicted by DCM using the bulk viscosity in Figure 4b. When L
is sufficiently long (i.e., L > d2/4a), lateral friction dominates
the parallel diffusion of NRs,13 so that for NRs to continue to
diffuse in the parallel direction adjacent openings in the
entanglement mesh must (partially) align (c.f., Figure 1). Thus,
a complete description of NR diffusion should also account for
the rotation of NRs as they diffuse through the entanglement
mesh.
The rotational motion of NRs is inversely proportional to

bulk viscosity and decreases strongly as L increases as Drotational
∼ L−3. Here L = 43 nm, about 5× larger than dt, so that NRs
thread about five entanglement meshes. Although rotational
motion is constrained by entanglements, NRs can locally rotate
by the segmental mobility of matrix subchains. For comparison,
entangled matrix chains (160−2000 kDa) are expected to
exhibit high segmental mobility because chain diffusivity is
about an order of magnitude greater than NR diffusivity at the
same temperature (i.e., T = 190 °C). Therefore, we propose
that segmental relaxation of matrix chains near the NR allows
for rotation-mediated translational motion of NRs, which may
explain the M−1.4 scaling suggestive of the weak coupling in
Figure 4b (closed circles).
Figure 5 shows the experimental diffusion coefficients

normalized by the continuum prediction using either PS or
PS/NR viscosities. For M = 9k (unentangled), the measured
diffusion coefficient is in good agreement with the continuum
theory, possibly because the NR diameter and length are both
larger than 2Rg. However, in both cases, the normalized D
increases strongly as the average number of entanglements, M/
Me, increases. Previously, deviations from SE diffusion in melts
were observed for spherical NPs having diameters comparable
to the entanglement mesh size (d/dt ∼ 1−2).10 Using GLE
theory and MD simulations, Kalathi et al. reported that the
matrix molecular weight dependence of NP diffusion depends

on NP size due to spontaneous fluctuations in the
entanglement mesh.14 In a similar way, for high molecular
weight polymer melts, the constraint release of subchains
adjacent to the NRs allow the entanglement mesh to align and
NRs to rotate and thereby to facilitate parallel diffusion. For
high M, these results indicate that nanoscale fillers (e.g.,
isotropic NPs or anisotropic NRs) with dimensions smaller
than the entanglement mesh interact with a discrete medium
rather than a continuous medium, where macroscopic viscosity
dictates diffusion. Therefore, the increase in the normalized
diffusion coefficients as M/Me increases (Figure 5) may be
attributed to the partial decoupling of NR motion and polymer
dynamics.
In conclusion, the diffusion of nanorods with a diameter

smaller than the entanglement mesh size or tube diameter (i.e.,
d < dt) of the polymer matrix is observed to be up to 3 orders of
magnitude faster than the continuum model that assumes a
uniform hydrodynamic medium. This enhanced diffusion likely
results from decoupling of nanorod diffusion from the
relaxation of matrix chains that surround the nanorod due
the relative size of the NR diameter to the matrix network, d <
dt. Because NRs can rotate and tilt within the confining
network to enter an adjacent entanglement mesh, NR motion is
not completely decoupled from polymer dynamics, because the
NR is confined within about five networks. Therefore, the weak
M dependence of D (∼M−1.4) implies that the local viscosity of
chain segments along the NR length (η ∼ ηm L a−1) influences
dynamics at the NR/polymer interface. However, a compre-
hensive understanding of the mechanism for NR diffusion
incorporating both rotational and translational motion is still
unclear. Theoretical studies similar to Kalathi et al.14 should be
extended to nanorods to clarify the relationship between the
diffusion of anisotropic particles in an entangled polymer melt
and the fundamental parameters such as matrix molecular
weight, entanglement mesh size, and particle dimensions.
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Transmission electron micrograph depicting the stable
dispersion of TiO2 NRs in PS matrix. The Supporting

Figure 5. NR diffusion coefficients (D) normalized by the diffusion
coefficients predicted by the continuum model (DCM) as a function of
the average number of entanglements per PS matrix chain. Upper and
lower insets show NRs in an entangled polymer melt (d < dt < L) and
continuum medium (dt < d, L), where diffusion scales as M−1.4 and
M−3.0, respectively.
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